Applies ToExcel for Microsoft 365 Excel for Microsoft 365 for Mac Excel สำหรับเว็บ Excel 2024 Excel 2024 for Mac Excel 2021 Excel 2021 for Mac Excel 2019 Excel 2019 for Mac Excel 2016

บทความนี้จะอธิบายเกี่ยวกับไวยากรณ์ของสูตรและการใช้ฟังก์ชัน LINEST ใน Microsoft Excel

คำอธิบาย

ฟังก์ชัน LINEST จะคํานวณสถิติของเส้นโดยใช้วิธี "สี่เหลี่ยมน้อยที่สุด" เพื่อคํานวณเส้นตรงที่เหมาะกับข้อมูลของคุณที่สุด แล้วส่งกลับอาร์เรย์ที่อธิบายเส้น คุณยังสามารถรวม LINEST กับฟังก์ชันอื่นๆ เพื่อคํานวณสถิติสําหรับโมเดลชนิดอื่นๆ ที่เป็นเชิงเส้นในพารามิเตอร์ที่ไม่รู้จัก รวมถึงโพลิโนเมียล ลอการิทึม เอ็กซ์โพเนนเชียล และพาวเวอร์ซีรีย์ เนื่องจากฟังก์ชันนี้ส่งกลับอาร์เรย์ของค่าต่างๆ จึงต้องใส่เป็นสูตรอาร์เรย์ คําแนะนําให้ทําตามตัวอย่างในบทความนี้

สมการของเส้นตรงคือ

y = mx + b

หรือ

y = m1x1 + m2x2 + ... + b

ถ้ามีช่วงของค่า x หลายช่วง โดยที่ค่า y ที่ไม่เป็นอิสระคือฟังก์ชันของค่า x ที่เป็นอิสระ ค่า m คือสัมประสิทธิ์ที่สอดคล้องกับแต่ละค่า x และ b เป็นค่าคงที่ โปรดทราบว่า y, x และ m สามารถเป็นเวกเตอร์ได้ อาร์เรย์ที่ฟังก์ชัน LINEST ส่งกลับคือ {mn,mn-1,...,m1,b} LINEST ยังสามารถส่งกลับค่าสถิติการถดถอยเพิ่มเติมได้

ไวยากรณ์

LINEST(known_y's, [known_x's], [const], [stats])

ไวยากรณ์ของฟังก์ชัน LINEST มีอาร์กิวเมนต์ดังนี้

ไวยากรณ์

  • ของ known_y    จำเป็น ชุดของค่า y ที่คุณทราบอยู่แล้วในความสัมพันธ์ y = mx + b

    • ถ้าช่วงของ known_y อยู่ในคอลัมน์เดียว แต่ละคอลัมน์ของ known_x's จะถูกแปลงเป็นตัวแปรแยกต่างหาก

    • ถ้าช่วงของ known_y อยู่ในแถวเดียว แต่ละแถวของ known_x จะถูกแปลงเป็นตัวแปรแยกต่างหาก

  • ของ known_x    ไม่จำเป็น ชุดของค่า x ที่คุณอาจทราบอยู่แล้วในความสัมพันธ์ y = mx + b

    • ช่วงของ known_x อาจประกอบด้วยชุดของตัวแปรตั้งแต่หนึ่งชุดขึ้นไป ถ้ามีการใช้ตัวแปรเพียงตัวเดียว known_y และของ known_x สามารถเป็นช่วงของรูปร่างใดๆ ก็ได้ ตราบใดที่มีมิติเท่ากัน ถ้ามีการใช้ตัวแปรมากกว่าหนึ่งตัวแปร known_y ต้องเป็น เวกเตอร์ (นั่นคือ ช่วงที่มีความสูงหนึ่งแถวหรือความกว้างหนึ่งคอลัมน์)

    • ถ้าไม่ได้ใส่ค่าอาร์เรย์ known_x's อาร์เรย์จะถูกกำหนดเป็นอาร์เรย์ {1,2,3,...} ที่มีขนาดเท่ากับอาร์เรย์ known_y's

  • const    ไม่จำเป็น ค่าตรรกะที่ระบุว่าจะบังคับให้ค่าคงที่ b เท่ากับ 0 หรือไม่

    • ถ้า const เป็น TRUE หรือละไว้ b จะถูกคำนวณตามวิธีปกติ

    • ถ้า const เป็น FALSE จะตั้งค่า b ให้เท่ากับ 0 และปรับค่า m ให้เหมาะกับสมการ y = mx

  • สถิติ    ไม่จำเป็น ค่าตรรกะที่ระบุว่าจะส่งกลับสถิติการถดถอยเพิ่มเติมหรือไม่

    • ถ้า stats เป็น TRUE ฟังก์ชัน LINEST จะส่งกลับค่าสถิติการถดถอยเพิ่มเติม ดังนั้น อาร์เรย์ที่ส่งกลับคือ {mn,mn-1,...,m1,b; sen, sen-1,...,se1,seb; r2,sey; F,df; ssreg, ssresid}

    • ถ้า stats เป็น FALSE หรือถ้าไม่ใส่ค่าใดไว้ LINEST จะส่งกลับเฉพาะค่าสัมประสิทธิ์ m และค่าคงที่ b เท่านั้น

      สถิติการถดถอยเพิ่มเติมมีดังนี้

สถิติ

คำอธิบาย

se1,se2,...,sen

ค่าความผิดพลาดมาตรฐานของสัมประสิทธิ์ m1,m2,...,mn

seb

ค่าความผิดพลาดมาตรฐานของค่าคงที่ b (seb = #N/A เมื่อ const เป็น FALSE)

r2

สัมประสิทธิ์ของการกําหนด เปรียบเทียบค่า y โดยประมาณและค่า y จริง และช่วงในค่าตั้งแต่ 0 ถึง 1 ถ้าเป็น 1 แสดงว่ามีสหสัมพันธ์ที่สมบูรณ์แบบในตัวอย่าง — ไม่มีความแตกต่างระหว่างค่า y โดยประมาณและค่า y จริง ในทางตรงกันข้าม ถ้าสัมประสิทธิ์ของการกําหนดเป็น 0 สมการการถดถอยจะไม่เป็นประโยชน์ในการคาดเดาค่า y สําหรับข้อมูลเกี่ยวกับวิธีคํานวณ2 ให้ดูที่ "ข้อสังเกต" ต่อไปในหัวข้อนี้

sey

ค่าความผิดพลาดมาตรฐานของค่าประมาณ y

F

สถิติ F หรือค่า F ที่ได้จากการสังเกต ใช้สถิติ F เพื่อตรวจสอบว่าความสัมพันธ์ที่สังเกตได้ระหว่างตัวแปรที่ไม่เป็นอิสระและตัวแปรอิสระเกิดขึ้นโดยบังเกิลหรือไม่

df

ระดับความเป็นอิสระ ใช้องศาความเป็นอิสระเพื่อช่วยให้คุณค้นหาค่าวิกฤต F ในตารางทางสถิติ เปรียบเทียบค่าที่คุณพบในตารางกับสถิติ F ที่ส่งกลับโดย LINEST เพื่อกําหนดระดับความเชื่อมั่นสําหรับตัวแบบ สําหรับข้อมูลเกี่ยวกับวิธีคํานวณ df ให้ดูที่ "ข้อสังเกต" ต่อไปในหัวข้อนี้ ตัวอย่างที่ 4 แสดงการใช้ F และ df

ssreg

ผลรวมกำลังสองที่ถดถอย

ssresid

ผลรวมกําลังสองที่เหลืออยู่ สําหรับข้อมูลเกี่ยวกับวิธีการคํานวณ ssreg และ ssresid ให้ดูที่ "ข้อสังเกต" ต่อไปในหัวข้อนี้

ภาพประกอบตัวอย่างต่อไปนี้แสดงลำดับที่ส่งกลับค่าสถิติการถดถอยเพิ่มเติม

แผ่นงาน

ข้อสังเกต

  • คุณสามารถอธิบายเส้นตรงด้วยความชัน และจุดตัดบนแกน y

    ความชัน (ม.): เมื่อต้องการหาความชันของเส้นตรง ซึ่งมักจะเขียนเป็น m ให้ใช้จุดสองจุดบนเส้นตรง (x1,y1) และ (x2,y2) ความชันเท่ากับ (y2 - y1)/(x2 - x1)

    จุดตัดแกน Y (b): จุดตัดแกน y ของเส้นตรง ซึ่งมักจะเขียนเป็น b คือค่าของ y ณ จุดที่เส้นตรงตัดแกน y

    สมการของเส้นตรงคือ y = mx + b เมื่อคุณทราบค่า m และ b คุณสามารถคํานวณจุดใดก็ได้บนเส้นโดยการเสียบค่า y หรือ x เข้ากับสมการนั้น คุณยังสามารถใช้ฟังก์ชัน TREND ได้อีกด้วย

  • เมื่อคุณมีตัวแปร x ที่เป็นตัวแปรอิสระเพียงตัวเดียว คุณสามารถหาความชัน และจุดตัดแกน y ได้โดยตรงด้วยการใช้สูตรต่อไปนี้

    ลาด: =INDEX(LINEST(known_y's,known_x's),1)

    จุดตัดแกน Y: =INDEX(LINEST(known_y's,known_x's),2)

  • ความถูกต้องของเส้นที่คํานวณโดยฟังก์ชัน LINEST จะขึ้นอยู่กับระดับของการกระจายในข้อมูลของคุณ ยิ่งข้อมูลมีเชิงเส้นมากเท่าไหร่LINEST ใช้วิธีกําลังสองน้อยที่สุดในการกําหนดว่าเหมาะสมที่สุดสําหรับข้อมูล เมื่อคุณมีตัวแปร x อิสระเพียงตัวเดียว การคํานวณสําหรับ m และ b จะยึดตามสูตรต่อไปนี้

    สมการ

    สมการ

    เมื่อ x และ y เป็นค่าเฉลี่ยของตัวอย่าง นั่นคือ x = AVERAGE(known x's) และ y = AVERAGE(known_y's)

  • ฟังก์ชันการปรับเส้นตรง LINEST และฟังก์ชันการปรับเส้นโค้ง LOGEST สามารถคํานวณเส้นตรงหรือเส้นโค้งที่เหมาะสมกับข้อมูลของคุณที่สุด อย่างไรก็ตาม คุณต้องตัดสินใจว่าผลลัพธ์ใดจากสองผลลัพธ์ที่เหมาะสมกับข้อมูลของคุณที่สุด คุณสามารถคํานวณ TREND(known_y's,known_x's) สําหรับเส้นตรง หรือ GROWTH(known_y'known_x s) สําหรับเส้นโค้งเอ็กซ์โพเนนเชียล ฟังก์ชันเหล่านี้ที่ไม่มีอาร์กิวเมนต์ ของ new_x ให้ส่งกลับอาร์เรย์ของค่า y ที่ถูกทํานายตามเส้นหรือเส้นโค้งนั้นที่จุดข้อมูลจริงของคุณ คุณสามารถเปรียบเทียบค่าที่ทํานายกับค่าจริง คุณอาจต้องการสร้างแผนภูมิทั้งสองสําหรับการเปรียบเทียบด้วยภาพ

  • ในการวิเคราะห์การถดถอย Excel จะคํานวณผลต่างยกกําลังสองระหว่างค่า y ที่ประเมินไว้สําหรับจุดนั้นและค่า y ที่แท้จริง ผลรวมของผลต่างยกกําลังสองเหล่านี้เรียกว่าผลรวมของค่ายกกําลังสองที่เหลือ ssresid Excel จะคํานวณผลรวมทั้งหมดของค่ายกกําลังสอง ซึ่งคือค่าสโตตาล เมื่ออาร์กิวเมนต์ const = TRUE หรือละไว้ ผลรวมยกกําลังสองทั้งหมดคือผลรวมของผลต่างยกกําลังสองระหว่างค่า y จริงและค่าเฉลี่ยของค่า y เมื่ออาร์กิวเมนต์ const = FALSE ผลรวมผลรวมของค่ายกกําลังสองคือผลรวมของค่า y จริง (โดยไม่ลบค่า y ค่าเฉลี่ยจากแต่ละค่า y) จากนั้นหาผลรวมของกําลังสอง ssreg ถดถอยได้จาก: ssreg = sstotal - ssresid ยิ่งผลรวมของกําลังสองที่เหลือมีขนาดเล็กลงเท่าใด เมื่อเปรียบเทียบกับผลรวมของกําลังสองทั้งหมด ยิ่งค่าของสัมประสิทธิ์ของการกําหนดมากน้อยเพียงใด r2 ซึ่งเป็นตัวบ่งชี้ว่าสมการเป็นผลมาจากการวิเคราะห์การถดถอยมากเพียงใด จะอธิบายความสัมพันธ์ระหว่างตัวแปรต่างๆ ค่าของ r2 เท่ากับ ssreg/sstotal

  • ในบางกรณี คอลัมน์ X อย่างน้อยหนึ่งคอลัมน์ (สมมติว่า Y และ X's อยู่ในคอลัมน์) อาจไม่มีค่าที่ทํานายเพิ่มเติมเมื่อมีคอลัมน์ X อื่นๆ กล่าวอีกนัยหนึ่ง การกําจัดคอลัมน์ X อย่างน้อยหนึ่งคอลัมน์อาจทําให้ค่า Y ที่ทํานายมีความถูกต้องเท่าๆ กัน ในกรณีดังกล่าว คอลัมน์ X ที่ซ้ําซ้อนเหล่านี้ควรถูกละเว้นจากรูปแบบการถดถอย ปรากฏการณ์นี้เรียกว่า "ภาวะร่วมเส้นตรง" เนื่องจากคอลัมน์ X ที่ซ้ําซ้อนใดๆ สามารถแสดงเป็นผลรวมของแผนภูมิพหุคูณของคอลัมน์ X ที่ไม่ซ้ําซ้อน ฟังก์ชัน LINEST จะตรวจสอบความเป็นเส้นตรง และนําคอลัมน์ X ที่ซ้ําซ้อนออกจากตัวแบบข้อมูลการถดถอยเมื่อระบุคอลัมน์เหล่านั้น คอลัมน์ X ที่ถูกเอาออกสามารถถูกรับรู้ได้ในผลลัพธ์ ของ LINEST ว่ามีสัมประสิทธิ์ 0 ค่านอกเหนือจากค่า 0 se ถ้าคอลัมน์อย่างน้อยหนึ่งคอลัมน์ถูกเอาออกเป็นคอลัมน์ที่ซ้ําซ้อน df จะได้รับผลกระทบเนื่องจาก df จะขึ้นอยู่กับจํานวนของคอลัมน์ X ที่ใช้เพื่อทํานายจริงๆ สําหรับรายละเอียดเกี่ยวกับการคํานวณ df โปรดดูตัวอย่างที่ 4 ถ้า df ถูกเปลี่ยนแปลงเนื่องจากคอลัมน์ X ซ้ําซ้อนถูกเอาออก ค่าของ sey และ F จะได้รับผลกระทบเช่นกัน ความเป็นเส้นตรงควรค่อนข้างหายากในทางปฏิบัติ อย่างไรก็ตาม กรณีหนึ่งที่มีโอกาสเกิดขึ้นคือเมื่อคอลัมน์ X บางคอลัมน์มีค่าเพียง 0 และ 1 เป็นตัวระบุว่าเรื่องของการทดลองเป็นสมาชิกของกลุ่มใดกลุ่มหนึ่งหรือไม่ ถ้า const = TRUE หรือละไว้ ฟังก์ชัน LINEST จะแทรกคอลัมน์ X เพิ่มเติมของค่า 1 ทั้งหมดเพื่อสร้างแบบจําลองจุดตัดแกนอย่างมีประสิทธิภาพ ถ้าคุณมีคอลัมน์ที่มีค่า 1 สําหรับแต่ละหัวข้อถ้าเป็นผู้ชาย หรือ 0 ถ้าไม่มี และคุณยังมีคอลัมน์ที่มี 1 สําหรับหัวข้อแต่ละเรื่องถ้าเป็นผู้หญิง หรือ 0 ถ้าไม่ คอลัมน์หลังนี้ซ้ําซ้อนเนื่องจากรายการในคอลัมน์นั้นสามารถหาได้จากการลบรายการในคอลัมน์ "ตัวบ่งชี้ชาย" จากรายการในคอลัมน์เพิ่มเติมของค่า 1 ทั้งหมดที่เพิ่มโดยฟังก์ชัน LINEST

  • ค่าของ df จะถูกคํานวณดังนี้ เมื่อไม่มีการลบคอลัมน์ X ออกจากตัวแบบเนื่องจากภาวะร่วมเส้นตรง: ถ้ามีคอลัมน์ k ของ known_x และ const = TRUE หรือละไว้ df = n – k – 1 ถ้า const = FALSE, df = n - k ในทั้งสองกรณี คอลัมน์ X แต่ละคอลัมน์ที่ถูกเอาออกเนื่องจากความเป็นเส้นตรงจะเพิ่มค่า df ขึ้น 1

  • เมื่อใส่ค่าคงที่อาร์เรย์ (เช่น known_x)เป็นอาร์กิวเมนต์ ให้ใช้เครื่องหมายจุลภาคคั่นระหว่างค่าที่อยู่ในแถวเดียวกัน และใช้เครื่องหมายอัฒภาคคั่นระหว่างแถวแต่ละแถว อักขระตัวคั่นอาจแตกต่างกันขึ้นอยู่กับการตั้งค่าภูมิภาคของคุณ

  • จงจำไว้ว่าค่า y จากการทำนายโดยสมการการถดถอยอาจไม่ถูกต้องถ้าอยู่นอกช่วงของค่า y ที่คุณใช้กำหนดสมการ

  • อัลกอริทึมพื้นฐานที่ใช้ในฟังก์ชัน LINEST แตกต่างจากอัลกอริทึมพื้นฐานที่ใช้ในฟังก์ชัน SLOPE และ INTERCEPT ความแตกต่างระหว่างอัลกอริทึมเหล่านี้อาจนําไปสู่ผลลัพธ์ที่แตกต่างกันเมื่อไม่ได้ระบุข้อมูลและร่วมเส้นตรง ตัวอย่างเช่น ถ้าจุดข้อมูลของอาร์กิวเมนต์ ของ known_y เป็น 0 และจุดข้อมูลของอาร์กิวเมนต์ ของ known_x คือ 1:

    • LINEST ส่งกลับค่า 0 อัลกอริทึมของฟังก์ชัน LINEST ถูกออกแบบมาเพื่อให้ส่งกลับผลลัพธ์ที่สมเหตุสมผลสําหรับข้อมูลร่วมเส้นตรงและในกรณีนี้สามารถพบได้อย่างน้อยหนึ่งคําตอบ

    • ฟังก์ชัน SLOPE และ INTERCEPT จะส่งกลับค่า #DIV/0! ข้อผิดพลาด อัลกอริทึมของฟังก์ชัน SLOPE และ INTERCEPT ได้รับการออกแบบมาให้ค้นหาคําตอบเดียวเท่านั้นและในกรณีนี้อาจมีมากกว่าหนึ่งคําตอบ

  • นอกจากการใช้ LOGEST เพื่อคํานวณสถิติสําหรับชนิดการถดถอยอื่นๆ แล้ว คุณสามารถใช้ LINEST เพื่อคํานวณช่วงของชนิดการถดถอยอื่นๆ ได้โดยการใส่ฟังก์ชันของตัวแปร x และ y เป็นชุดข้อมูล x และ y สําหรับ LINEST ตัวอย่างเช่น สูตรต่อไปนี้:

    =LINEST(yvalues, xvalues^COLUMN($A:$C))

    จะทำงานเมื่อคุณมีคอลัมน์เดียวของค่า y และคอลัมน์เดียวของค่า x เพื่อคำนวณค่าประมาณ (โพลิโนเมียลอันดับ 3) แบบลูกบาศก์ของฟอร์ม

    y = m1*x + m2*x^2 + m3*x^3 + b

    คุณสามารถปรับสูตรนี้เพื่อคำนวณการถดถอยชนิดอื่นได้ แต่ในบางกรณีจำเป็นที่จะต้องปรับค่าผลลัพธ์และสถิติอื่นด้วย

  • ค่า F-test ที่ส่งกลับโดยฟังก์ชัน LINEST แตกต่างจากค่า F-test ที่ส่งกลับโดยฟังก์ชัน FTEST LINEST จะส่งกลับค่าสถิติ F ขณะที่ FTEST จะส่งกลับค่าความน่าจะเป็น

ตัวอย่าง

ตัวอย่าง 1 - ความชันและจุดตัดแกน Y

คัดลอกข้อมูลตัวอย่างในตารางต่อไปนี้ และวางในเซลล์ A1 ของเวิร์กชีต Excel ใหม่ สำหรับสูตรที่จะแสดงผลลัพธ์ ให้เลือกสูตร กด F2 แล้วกด Enter ถ้าคุณต้องการ คุณสามารถปรับความกว้างของคอลัมน์เพื่อดูข้อมูลทั้งหมดได้

ค่า y ที่ทราบแล้ว

ค่า x ที่ทราบแล้ว

1

0

9

4

5

2

7

3

ผลลัพธ์ (ความชัน)

ผลลัพธ์ (จุดตัดแกน y)

2

1

สูตร (สูตรอาร์เรย์ในเซลล์ A7:B7)

=LINEST(A2:A5,B2:B5,,FALSE)

ตัวอย่าง 2 - การถดถอยเชิงเส้นแบบเชิงเดียว

คัดลอกข้อมูลตัวอย่างในตารางต่อไปนี้ และวางในเซลล์ A1 ของเวิร์กชีต Excel ใหม่ สำหรับสูตรที่จะแสดงผลลัพธ์ ให้เลือกสูตร กด F2 แล้วกด Enter ถ้าคุณต้องการ คุณสามารถปรับความกว้างของคอลัมน์เพื่อดูข้อมูลทั้งหมดได้

เดือน

ยอดขาย

1

$3,100

2

$4,500

3

$4,400

4

$5,400

5

$7,500

6

$8,100

สูตร

ผลลัพธ์

=SUM(LINEST(B1:B6, A1:A6)*{9,1})

$11,000

คำนวณค่าประมาณของยอดขายในเดือนที่เก้า โดยใช้ยอดขายในเดือนที่ 1 ถึงเดือนที่ 6

ตัวอย่าง 3 - การถดถอยเชิงเส้นแบบพหุคูณ

คัดลอกข้อมูลตัวอย่างในตารางต่อไปนี้ และวางในเซลล์ A1 ของเวิร์กชีต Excel ใหม่ สำหรับสูตรที่จะแสดงผลลัพธ์ ให้เลือกสูตร กด F2 แล้วกด Enter ถ้าคุณต้องการ คุณสามารถปรับความกว้างของคอลัมน์เพื่อดูข้อมูลทั้งหมดได้

พื้นที่ของชั้น (x1)

สำนักงาน (x2)

ทางเข้า (x3)

อายุ (x4)

ค่าที่ประเมินได้ (y)

2310

2

2

20

$142,000

2333

2

2

1.2

$144,000

2356

3

1.5

33

$151,000

2379

3

2

43

$150,000

2402

2

3

53

$139,000

2425

4

2

23

$169,000

2448

2

1.5

99

$126,000

2471

2

2

34

$142,900

2494

3

3

23

$163,000

2517

4

4

55

$169,000

2540

2

3

22

$149,000

-234.2371645

13.26801148

0.996747993

459.7536742

1732393319

สูตร (สูตรอาร์เรย์แบบไดนามิกที่ใส่ใน A19)

=LINEST(E2:E12,A2:D12,TRUE,TRUE)

ตัวอย่างที่ 4 - การใช้สถิติ F และ r2

ในตัวอย่างก่อนหน้านี้ สัมประสิทธิ์ของการกําหนด หรือ r2 คือ 0.99675 (ดูเซลล์ A17 ในผลลัพธ์สําหรับ LINEST) ซึ่งจะระบุความสัมพันธ์ที่แข็งแกร่งระหว่างตัวแปรอิสระและราคาขาย คุณสามารถใช้สถิติ F เพื่อตรวจสอบว่าผลลัพธ์เหล่านี้มีค่า r2 สูงเกิดขึ้นโดยบังเกิลหรือไม่

สมมติว่าในขณะที่ในความเป็นจริงไม่มีความสัมพันธ์ระหว่างตัวแปร แต่คุณได้วาดตัวอย่างที่หายากของอาคารสํานักงาน 11 ที่ทําให้เกิดการวิเคราะห์ทางสถิติเพื่อแสดงความสัมพันธ์ที่แข็งแกร่ง คําว่า "Alpha" จะใช้สําหรับความน่าจะเป็นของการสรุปอย่างไม่ถูกต้องว่ามีความสัมพันธ์

ค่า F และ df ในเอาต์พุตจากฟังก์ชัน LINEST สามารถใช้เพื่อประเมินความเป็นไปได้ที่ค่า F ที่สูงกว่าจะเกิดขึ้นโดยบังเกิล สามารถเปรียบเทียบ F กับค่าวิกฤตในตารางการแจกแจง F หรือฟังก์ชัน FDIST ที่เผยแพร่ใน Excel สามารถใช้เพื่อคํานวณความน่าจะเป็นของค่า F ที่มีขนาดใหญ่ขึ้นโดยบังเกิล การแจกแจง F ที่เหมาะสมมีระดับความเป็นอิสระ v1 และ v2 ถ้า n เป็นจํานวนจุดข้อมูล และ const = TRUE หรือละไว้ v1 = n – df – 1 และ v2 = df (ถ้า const = FALSE แล้ว v1 = n – df และ v2 = df.) ฟังก์ชัน FDIST ที่มีไวยากรณ์ FDIST(F,v1,v2) จะส่งกลับค่าความน่าจะเป็นของค่า F ที่สูงกว่าที่เกิดขึ้นตามโอกาส ในตัวอย่างนี้ df = 6 (เซลล์ B18) และ F = 459.753674 (เซลล์ A18)

ถ้าค่า Alpha เท่ากับ 0.05, v1 = 11 – 6 – 1 = 4 และ v2 = 6 ระดับวิกฤตของ F คือ 4.53 เนื่องจาก F = 459.753674 สูงกว่า 4.53 มาก จึงไม่น่าเป็นไปได้ที่ค่า F สูงนี้เกิดขึ้นโดยบังเอิญ (ด้วย Alpha = 0.05 สมมติฐานว่าไม่มีความสัมพันธ์ระหว่าง known_y และ known_x จะถูกปฏิเสธเมื่อ F สูงกว่าระดับวิกฤตที่ 4.53) คุณสามารถใช้ฟังก์ชัน FDIST ใน Excel เพื่อหาความน่าจะเป็นที่ค่า F ซึ่งเกิดขึ้นโดยบังเกิล ตัวอย่างเช่น FDIST(459.753674, 4, 6) = 1.37E-7 ซึ่งเป็นความน่าจะเป็นที่เล็กมาก คุณสามารถสรุปได้ไม่ว่าจะโดยการค้นหาระดับวิกฤตของ F ในตารางหรือโดยใช้ฟังก์ชัน FDIST ว่าสมการการถดถอยมีประโยชน์ในการทํานายค่าประเมินของอาคารสํานักงานในพื้นที่นี้ โปรดจําไว้ว่าการใช้ค่าที่ถูกต้องของ v1 และ v2 ที่คํานวณในย่อหน้าก่อนหน้านั้นเป็นสิ่งสําคัญ

ตัวอย่าง 5 - การคำนวณสถิติ t

การทดสอบสมมติฐานอีกอย่างหนึ่งจะเป็นตัวกําหนดว่าสัมประสิทธิ์ความชันแต่ละค่ามีประโยชน์ในการประมาณค่าประเมินของอาคารสํานักงานใน ตัวอย่างที่ 3 หรือไม่ ตัวอย่างเช่น เมื่อต้องการทดสอบสัมประสิทธิ์อายุของนัยสําคัญทางสถิติ ให้หาร -234.24 (สัมประสิทธิ์ความชันของอายุ) ด้วย 13.268 (ข้อผิดพลาดมาตรฐานโดยประมาณของสัมประสิทธิ์อายุในเซลล์ A15) ต่อไปนี้คือค่า t ที่สังเกตได้:

t = m4 ÷ se4 = -234.24 ÷ 13.268 = -17.7

ถ้าค่าสัมบูรณ์ของ t สูงพอก็สามารถสรุปได้ว่าค่าสัมประสิทธิ์ความชันมีประโยชน์ในการประมาณค่าประเมินของอาคารสํานักงานในตัวอย่างที่ 3 ตารางต่อไปนี้แสดงค่าสัมบูรณ์ของค่า t ที่สังเกตได้ 4 ค่า

ถ้าคุณศึกษาตารางในคู่มือสถิติ คุณจะพบว่า t-critical, two tailed, with 6 degrees of freedom and Alpha = 0.05 is 2.447. ค่าวิกฤตนี้ยังสามารถพบได้โดยใช้ฟังก์ชัน TINV ใน Excel TINV(0.05,6) = 2.447 เนื่องจากค่าสัมบูรณ์ของ t (17.7) มากกว่า 2.447 อายุจึงเป็นตัวแปรสําคัญเมื่อประเมินค่าประเมินของอาคารสํานักงาน ตัวแปรอิสระอื่นๆ แต่ละตัวสามารถทดสอบสําหรับนัยสําคัญทางสถิติในลักษณะที่คล้ายกัน ต่อไปนี้เป็นค่า t ที่สังเกตได้สําหรับตัวแปรอิสระแต่ละตัว

ตัวแปร

ค่า t ที่ได้จากการสังเกต

พื้นที่ของชั้น

5.1

จำนวนสำนักงาน

31.3

จำนวนทางเข้า

4.8

อายุ

17.7

ค่าเหล่านี้ล้วนมีค่าสัมบูรณ์ที่มากกว่า 2.447 ดังนั้น ตัวแปรทั้งหมดที่ใช้ในสมการการถดถอยจึงเป็นประโยชน์ในการประมาณค่าประเมินของอาคารสำนักงานในพื้นที่นี้

ต้องการความช่วยเหลือเพิ่มเติมหรือไม่

ต้องการตัวเลือกเพิ่มเติมหรือไม่

สํารวจสิทธิประโยชน์ของการสมัครใช้งาน เรียกดูหลักสูตรการฝึกอบรม เรียนรู้วิธีการรักษาความปลอดภัยอุปกรณ์ของคุณ และอื่นๆ

ชุมชนช่วยให้คุณถามและตอบคําถาม ให้คําติชม และรับฟังจากผู้เชี่ยวชาญที่มีความรู้มากมาย