Uwaga: Staramy się udostępniać najnowszą zawartość Pomocy w Twoim języku tak szybko, jak to możliwe. Ta strona została przetłumaczona automatycznie i może zawierać błędy gramatyczne lub nieścisłości. Chcemy, aby ta zawartość była dla Ciebie przydatna. Prosimy o powiadomienie nas, czy te informacje były pomocne, u dołu tej strony. Oto angielskojęzyczny artykuł do wglądu.
Zwraca przedział ufności dla średniej populacji z rozkładem zwykłym. Przedział ufności jest zakresem po obu stronach średniej danej próbki. Na przykład w przypadku zamówienia produktu pocztą można określić, z określoną pewnością (ufnością), kiedy najwcześniej lub najpóźniej będzie go można otrzymać.
Składnia
UFNOŚĆ(alfa;odchyl_standard;rozmiar)
Alfa to poziom istotności używany do obliczania poziomu ufności. Poziom ufności jest równy 100*(1 — alfa)% lub innymi słowy, alfa równe 0,05 wskazuje 95% poziom ufności.
Odchylenie_std to odchylenie standardowe populacji zakresu danych i zakłada się, że jest ono znane.
Rozmiar jest rozmiarem próbki.
Spostrzeżenia
-
Jeśli którykolwiek z argumentów nie jest liczbą, funkcja UFNOŚĆ zwraca wartość błędu #ARG!.
-
Jeśli alfa ≤ 0 lub alfa ≥ 1, funkcja UFNOŚĆ zwraca wartość błędu #LICZBA!
-
Jeśli odchylenie_std ≤ 0, funkcja UFNOŚĆ zwraca wartość błędu #LICZBA!
-
Jeśli argument „wielkość” nie jest liczbą całkowitą, jego wartość jest obcinana do liczby całkowitej.
-
Jeśli argument „wielkość” < 1, funkcja UFNOŚĆ zwraca wartość błędu #LICZBA!
-
Jeśli przyjmie się alfa równe 0,05, to trzeba obliczyć obszar pod standardową krzywą normalną, który jest równy (1 – alfa) lub 95%. Wartość ta jest równa ± 1,96. Przedział ufności jest zatem równy:
Przykład
Przypuśćmy, że w próbie 50 pracowników dojeżdżających do pracy zaobserwowano, że średnia długość dojazdu do pracy jest równa 30 minut przy standardowym odchyleniu populacji równym 2,5. Możemy być na 95 procent pewni, że średnia populacji należy do przedziału:
Alfa |
OdchStd |
Wielkość |
Formuła |
Opis (wynik) |
0,05 |
0,5 |
50 |
=UFNOŚĆ([Alfa];[OdchStd];[Wielkość]) |
Przedział ufności dla średniej danej populacji. Innymi słowy, średnia długość dojazdu do pracy wynosi 30 ± 0,692951 minut lub od 29,3 do 30,7 minut. (0,692951) |